
1

Lab 6: Path Planning and Pure Pursuit for

Autonomous Navigation of the Stata Basement

6.4200 Robotics: Science and Systems

April 26th, 2023

Joseph Camacho, Christina Chen, Timothy Kostolansky, Nicole Shigiltchoff, Jessica Wu

I. INTRODUCTION

A. Challenge Definition ()

The challenge is to develop a path-planning algorithm that

can help our racecar robot navigate a maze and reach a

specified goal location. The robot has a limited sensing range,

and it must avoid obstacles in the maze while minimizing

the distance traveled. To accomplish this goal, we will be im-

plementing algorithms for path planning and path following,

which are essential for the city planning segment of the final

challenge of this class, where our algorithms must be able

to determine a trajectory and command directions for our

car to follow, given only a starting position, goal position,

and the map of the cardboard city it will be navigating.

We may use any path planning algorithm of our choice to

find the trajectory for the maze. The trajectory must not cut

corners or have the car run into any object. It should be as

close to an optimal, shortest path as possible. And ideally,

we also want the path-finding calculation to be efficient

and fast so we can quickly change goal positions during

the challenge as needed. Once we find a trajectory, we

then want our robot car to follow it smoothly while not

cutting corners and running into obstacles during the final

challenge with a pure pursuit algorithm. We want evidence

that our algorithm works, which we will obtain from both

simulation and physical trials. We would start by using the

ROS racecar_docker simulation environment to develop and

test our algorithms. Ultimately, we evaluate our performance

in the final challenge based on several metrics, including the

distance traveled, the time taken to reach the goal, and the

number of collisions with obstacles. We aim to use these

metrics to compare the performance of different algorithms

and to optimize our algorithms for speed and accuracy.

B. Challenge Motivation ()

Both path planning and path following are common problems

in many robotics applications that generally would be useful

for us to understand and are crucial for the final challenge

we face in this class. Our primary motivation for lab 6 is to

learn and implement a working version of both algorithms

and most importantly, ensure that they are integrated into

our robot within the tight time schedule. Due to tight

deadlines and the magnitude of the tasks at hand, we split

into subteams to work on independent elements to increase

Fig. 1. (a) A tree is extended by sampling a random point not in an obstacle,

finding the closest node on the tree, and adding a new node in the direction

of the random point. (b) The two trees are bridged when two nodes become

close enough and a path is found by going to the roots of the trees.

efficiency while always guaranteeing that at least one team

member is updated on all tasks in progress. From this project,

we learned how to prioritize tasks effectively to ensure that

the most critical tasks are completed first and how to be

flexible and adapt to changing circumstances.

II. TECHNICAL APPROACH

A. Path Planning

For path planning, we used RRT Connect, a variant of rapidly

exploring random trees (RRTs). RRT Connect has two such

trees—one rooted at the start and the other rooted at the

goal—and every iteration switches between extending the

first tree and the second tree. The trees are extended by

sampling a random point in open space, finding the closest

node on the relative tree, and adding a new node in the

direction of the sampled point δ away from the closest node.

When the branches of the two trees become close enough (in

particular, two nodes are at most δ away from each other),

the trees are bridged and a path is found by iterating upward

to the root from either side of the bridge. (See Fig. 1)

RRT-based methods have several properties that make them

useful for pathing on a racecar. First, unlike grid-based

search algorithms, they work natively over continuous space.

Second, they rapidly explore the search space (as the name

would indicate) by being biased to extend the tree towards

the largest cells of the Voronoi diagram induced by the

tree. Finally, they are very space efficient, especially in high-

dimensional search spaces.

RRT Connect adds one more optimization to a basic RRT

algorithm: It uses two trees. It is much easier for the branches



2

Fig. 2. An example of using RRT Connect to path around red circles from a

start (blue) to a goal (yellow).

of two growing trees to connect than for a single tree to

extend to the goal (as RRT alone does), which makes RRT

Connect significantly faster than RRT.

Unfortunately, RRT Connect (and other RRT algorithms) do

have two drawbacks. First, the paths they output are not

smooth. Second, it tends to cut corners when δ is large. The

first drawback did not pose an issue for us because we used a

path-planning algorithm (pure pursuit) that naturally smooths

out paths. The second drawback we fixed by dilating and

eroding the obstacles to give a larger area the path cannot

cut through, which we explain further below.

B. Obstacle Dilation and Erosion

A simple way to help RRT Connect avoid cutting through

corners is to dilate the obstacles so the path stays farther

away from the walls. We used scipy.ndimage to first erode the

obstacles (to get rid of small noise) and then dilate them by a

larger radius. For our specific map, we found that an erosion

of 18 pixels and a dilation of 22 pixels (corresponding to

0.91 meters and 1.11 meters, respectively, at our resolution)

worked fairly well.

As we’ll explain later, pure pursuit also tends to cut off

corners, and this same erosion and dilation technique helps

avoid that as well.

C. Pure Pursuit

To follow the path defined by the RRT Connect algorithm,

we implemented the Pure Pursuit algorithm (Fig. 4). This

algorithm searches for a target point at the intersection of a

circle centered at the location of the car and the path and

uses Ackermann Steering to guide the car toward that point.

A new circle and intersection point are calculated each time

the localization algorithm determines a new location for the

robot, at a frequency of 50 Hz.

To determine the location of the car, we used our im-

plementation of Monte Carlo Localization from lab 5. This

Fig. 3. Images of eroding and dilating the map. (a) the original map (b)

erosion alone (c) dilation alone (d) the final map with erosion and dilation.

Fig. 4. A visual representation of the Pure Pursuit algorithm. A circle

with a radius of the lookahead distance is created around the car, and its

intersection with the planned path that is closest to the goal is determined

to be the lookahead point. The robot will now drive towards the lookahead

point.

algorithm used a combination of exteroceptive LiDAR and

proprioceptive odometry data to determine the most likely

location of the car and worked effectively to find the car’s

pose in the Stata basement.

The circle around the car was parameterized with two values:

the origin, which was set to equal the position of the car, and

the radius, which is the lookahead distance. The lookahead

distance is how far away from the car the lookahead point

should be, and is a value that can be optimized manually

depending on the path that the robot is expected to follow.

For planned paths without sharp turns where the robot can



3

safely deviate from the path, the lookahead distance can be

set to be large, such as 6x the length of the robot. This will

allow for the smoothest robot trajectory. However, in situa-

tions where it would be important for the robot to adhere to

the planned path as closely as possible, such as in a narrow

space with sharp corners, the lookahead value should be set

low, such as 1x the length of the robot. Unfortunately, this

also increases the likelihood of the robot oscillating around

the planned path due to constant attempts to overcorrect

after a sharp turn. In the pure pursuit simulation for this lab,

we found that a lookahead distance of 3 m, about 6x the

length of the car, produced the smoothest trajectory while

minimizing obstacle collisions. Despite the robot cutting the

corners of the planned path, obstacle dilation and erosion

prevented any part of the path from being close enough to

a static obstacle that corner-cutting did not cause collisions

in the majority of cases.

In many situations, there are multiple points of intersection

of the planned path and the circle around the robot. When

multiple possible candidates for the lookahead point are

found, the point that is closest to the goal at the end of

the planned path is chosen as the lookahead point. This is

done to prevent the robot from ever driving away from the

goal at the end of the planned path.

After determining the location of the lookahead point, Ack-

ermann Steering was used to drive the car towards it (Fig.

5). The steering angle of the robot was determined to be

such that the robot would move towards the lookahead point

along the arc of a circle of radius L1

2 sin(η) of angle 2η, with η
defined as the angle between the vector of the robot’s initial

velocity and the lookahead distance vector from the robot

to the lookahead point and L1 defined as the lookahead

distance. This angle δ was calculated as follows:

tan−1

(
2L sin(η)

L1

)
L is defined as the wheelbase length of the robot, or the

distance (in m) between the front and back wheels of the

robot.

III. EXPERIMENTAL EVALUATION

We were not able to take quantitative data within the time

constraints of this lab, but we are actively working to measure

and test our path planning components, as this is paramount

in usage for the Final Challenge. Here we will discuss some

challenges that our team faced and the successes that we

had. Within the path planning module, RRT Connect is able

to efficiently find a valid path through the map within X

seconds. This was sufficient for the purposes of the lab, as the

driving itself took Y seconds, which is much larger than the

negligible X seconds that were spent on planning the path.

One challenge we overcame within path planning was the

cutting of corners, which we resolved using map dilation and

erosion techniques. Our paths were qualitatively safe for the

car to drive, i.e., not cutting corners, after we applied the

dilation and erosion to the map before planning the path.

Within the pure pursuit module, our algorithm successfully

uses a lookahead distance to plan car driving directions.

Fig. 5. A visual explanation of the geometry of Ackermann Steering. The

steering angle δ is calculated using the wheelbase length L, the arc angle

2η, and the lookahead distance L1.

Qualitatively, the paths that our car takes in simulation and

in reality are both safe and direct. The car is able to take

path directions and drive from a starting position to a goal

position within the lab’s time constraints.

IV. CONCLUSION ()

In lab 5, we successfully implemented path planning on the

racecar. This included developing a path planning algorithm

using RRT Connect, programming odometry controls for the

car to follow paths using pure pursuit, and combining the

path planning and pure pursuit to allow the robot to find

and follow a path in simulated and real environments. We

did this within the Stata basement, which includes many

obstacles, turns, and irregularities, not to mention passersby

and objects that are not part of the virtual map programmed

onto the car. Through the course of the lab, we faced

many challenges, such as corner cutting in path planning,

pure pursuit not transferring as expected when moving from

simulation to reality, and multiple members of the group

getting sick over the course of the work. Despite these and

other challenges, we learned a lot and successfully created a

path-planning car, of which we are proud. We are excited to

transfer and apply this knowledge in future work, especially

in the upcoming 6.4200 Final Challenge.

V. LESSONS LEARNED

1) Joseph: I learned that it can actually be very easy to get

some algorithms (in particular RRT Connect) to work the first

time, and that it is very useful to first get inefficient code

working correctly before trying to optimize for speed.

2) Christina: I gained more technical insights in this lab by

tackling the code head on. I learned to take ownership of

parts of the code, even if I’ll need more time and support

than others. I’m trusting myself more to seek answers,

understand concepts, and execute sufficiently. For example,



4

I had to scout and understand the entire code base to

insert map dilation logic and integrate the simulation code

for the real environment. It’s an unfamiliar feeling to trust

myself to be the only one who understands something, so

be quick and adaptable if there’s no one to help, but I’m

learning to accept it and trust that I’ll still be able to find

the answers and convey the crucial details to the team.

I’m also learning about clear expectations to keep the team

organized and motivated; for example, I hope the constant

“Accomplishments and Todos” accomplishes that.

3) Timothy: I learned about a variety of path planning

algorithms and their respective advantages and drawbacks.

I also reviewed how to implement pure pursuit and helped

Nicole debug her code. It was a valuable experience to be

able to help others work on their respective parts this lab,

as I was sick at the start of the lab and was not able to

take a lead on one specific part. As a result, I learned about

everyone’s work and was able to help in a variety of places.

I also re-learned the value of time management and working

as a team, as we worked very well in crunch time this lab.

4) Nicole: This was the first group lab where I wrote the

majority of a coding component from scratch (the pure pur-

suit algorithm), and while others contributed to debugging,

I’m glad I got experience putting together the structure of

an algorithm independently. I also learned a lot about pure

pursuit and its different pros and cons through this process.

Additionally, I got practice communicating urgency to my

team in a way that effectively sped up our work process

despite the obstacles we encountered while finishing the lab.

5) Jessica: I learned about path planning algorithms such as

RRT and RRT Connect and how to tune the parameters of

the RRT algorithm and alter a map for our specific purpose.

I am now familiar with the geometric principles behind the

pure pursuit algorithm. We also all went through illness and

a time crunch for this lab which taught me how to better

manage a workload under pressure and ask for extensions

when I need them.


