
1

Lab 5: Robot Localization in the Stata Basement

using the Monte Carlo Localization Algorithm

6.4200 Robotics: Science and Systems

April 14th, 2023

Joseph Camacho, Christina Chen, Timothy Kostolansky, Nicole Shigiltchoff, Jessica Wu

I. INTRODUCTION

A. Challenge Definition (Nicole)

In previous labs, our racecar used only exteroceptive infor-

mation collected from its LiDAR and stereo camera sensors to

make decisions. This week, our team was tasked with com-

bining exteroceptive LiDAR data with proprioceptive odom-

etry information to determine the location and orientation,

together known as the pose, of the robot in a previously

mapped location: the Stata basement.

To accurately localize the robot in the Stata basement, both

exteroceptive and proprioceptive information is necessary.

LiDAR data is useful for determining the shape and dis-

tance of the nearby surroundings of the robot and can be

compared to the wall and obstacle outlines on the existing

map of the Stata basement to determine possible robot

poses. However, multiple locations in the Stata basement,

as well as in any typical space, have similar features, and

some parts of the basement, such as long, smooth hallways,

have no notable features that are recognizable to the LiDAR

scanner. Therefore, LiDAR information is frequently unhelpful

in providing the exact location of the robot—it frequently

provides multiple possible locations. In contrast, odometry

information, such as the robot’s linear and angular velocities,

is collected in a manner that is not biased by external features

(or lack thereof). Unfortunately, odometry information is

rarely accurate, as it cannot account for any asymmetry in the

physical structure of the robot or any other external factors

that can cause the robot to move not exactly as expected.

Odometric estimation of the robot’s location quickly accumu-

lates error and can become incredibly inaccurate.

Together, however, the exteroceptive LiDAR data and propri-

oceptive odometry information can be combined to produce

a much more accurate location estimate using the Monte

Carlo Localization (MCL) algorithm, a probabilistic approach

that can determine the most likely location of the robot by

comparing the robot’s actual LiDAR scan with the hypothet-

ical scan of all possible positions of the robot. We used the

MCL algorithm to accomplish our goal of localizing the robot

in the Stata basement.

B. Challenge Motivation (Nicole)

Motivations for this lab included having each of our group’s

members understand how the MCL algorithm works, as local-

ization is a common problem in many robotics applications

and it would be useful for us to know how to address

it later. Additionally, we will be using our MCL algorithm

implementation to facilitate path planning in lab 6, and we

will likely need to implement a localization algorithm in our

final project, the race around Johnson Track, in order for our

robot to know where it is on the track.

II. TECHNICAL APPROACH

A. Monte Carlo Localization(Nicole, Jessica, and Tim)

The Monte Carlo Localization algorithm (MCL) initializes a

random distribution of possible robot poses, also called

particles. The goal of MCL is to localize the particles to a

small region on the map in order to estimate the robot’s

pose on the map. The robot uses both exteroceptive LiDAR

data and interoceptive odometry information to do this task.

As the robot moves, its odometry information is used to up-

date the location of each particle (Fig. 1). Its physical environ-

ment is also scanned with LiDAR, determining how far away

the closest obstacle is and thereby creating an outline of the

environment around the robot. Ray casting is then used on

the particles to determine what the LiDAR data would look

like for each particle, creating environmental outlines for the

robot’s possible poses. These particle environmental outlines

are then compared with the actual environmental outline

produced by the LiDAR scan, and the amount of similarity

between a particle’s projection and actual environmental

outline is used to assign likelihood weights to each particle

(Fig. 1). More similar, and therefore more likely, particles get

assigned proportionally higher weights. With this information,

the robot’s position is estimated as the weighted mean of the

particles (Fig 1).

This process of the robot moving and the MCL particles’

location and weights being updated with odometry and LiDAR

data comparison, respectively, is repeated until the particles’

entropy is below a threshold. Then, the particles are resam-

pled from the weighted distribution of previous particles,

and the whole process is repeated continuously as the robot

drives through the Stata basement taking measurements

about itself and its environment.

B. Initializing Particles (Joseph)

Finding out where a robot is based only on what it can

see—and no other information—is known as the Kidnapped

2

Fig. 1. An illustration of our MCL algorithm. It uses odometry and LiDAR

information to update the positions and likelihoods of the particle, and

then uses the particles to estimate the average position of the robot on

a precomputed map. This estimate increases over time.

Robot Problem and is a very difficult problem. Solving this is

a very difficult problem, and quite out of scope for this class.

We solved a much easier problem: given a rough initial

estimation provided by humans, initialize a set of reasonable

potential particles. To sidestep these issues, we provide a

rough estimate (within 10 cm) of the robot’s initial position

and orientation. We can then initialize the particles in a wide

circle around this estimate, following a Gaussian distribution.

We chose an initial radial standard deviation of 0.84 m and an

initial angular standard deviation of pi / 2 radians, and found

in simulation that it could converge to the correct location

within 1 second for initial radial errors of up to 1 meter away

(Fig. 2). We also tested initial angular errors, but the initial

particles’ angles were spread out enough that changing the

angular error did not measurably affect convergence.

C. Estimating the Next Position of Particles using a Particle

Motion Model(Nicole and Jessica)

To estimate the position of each particle after the robot

moves, a new estimation of particle positions must be cal-

culated using odometry information from the car. Odometry

information includes the changes in the car’s position and

rotation, as well as the duration of time since the last

odometry information was logged. Given this information,

we determine a transformation matrix to apply to the current

particles and calculate new particle positions. The calculation

for this particle motion model is as follows:xt−1

yt−1

θt−1

+

cos(θt−1) −sin(θt−1) 0
sin(θt−1) cos(θt−1) 0

0 0 1

∆x
∆y
∆θ

 =

xt

yt
θt

(1)

xt−1 and yt−1 are defined as the previous time step’s (x, y)
coordinates of a particle, and θt−1 is defined as the previous

time step’s particle orientation. ∆x and ∆y are defined

as the odometry data from the robot that describe the

robot’s change in position between the current and previous

timestep, and ∆θ is defined as the change in orientation.

xt and yt are defined as the current time step’s (x, y)
coordinates of the particle, and θt−1 is defined as the current

time step’s particle orientation.

Fig. 2. An example of the particles right after initialization in simulation.

The particles, represented by red arrows, are clustered around the car,

represented by a blue rectangle. LiDAR data points, represented by points

ranging from red to blue depending on their measured distance from the

car, will be used to decrease the spread of the particles as the robot moves.

The particles will converge to one location, the estimated location of the

robot, within 1 second.

D. Computing Particle Likelihoods with the Sensor Model(Jes-

sica and Joseph)

We use a Hokuyo LiDAR scanner to estimate the particle

likelihoods. The weight, or likelihood, of a particle in MCL

is determined by how likely it is to record LiDAR scan data

zk from a possible position xk on a previously defined, static

map while knowing that the LiDAR scan data at xk should

be d (d is determined through ray casting on the map.)

This likelihood is modeled by four possible cases: the hit case,

the short case, the max case, and the random case.

1) Hit case

phit =

{
exp(− (zk−d)2

2σ2 if 0 ≤ zk ≤ 200

0 otherwise
(2)

2) Short case

pshort =

{
2
d (1−

zk
d) if 0 ≤ zk ≤ d and d 6= 0

0 otherwise
(3)

3) Max case

pmax =

{
1 if zk = 200

0 otherwise
(4)

4) Random case

prand =

{
1

200 if if 0 ≤ zk ≤ 200

0 otherwise
(5)

3

All of these cases are then summed into one distribution that

accounts for the different likelihoods of each case, weighting

each probability case by a set of experimentally determined

α values. The final distribution of this likelihood can be

calculated as

p(zk|xk,m) = αhit · phit + αshort · pshort + αmax · pmax + αrand · prand
(6)

Using this equation, we created a table to compute the

likelihoods of all possible particle likelihoods for discretized,

integer values of zk and d between 0 and 200 meters (the

possible range of distances produced by the Hokuyo LiDAR

scanner on the robot) (Fig. 3). Precomputing and referencing

a lookup table of all possible likelihood values with all the

possible zk and d combinations greatly increase the speed

of our MCL implementation, as computing the likelihoods

has a relatively high time cost and our algorithm is doing

this operation at a frequency of 20 Hz.

Fig. 3. A plot of the precomputed p(zk|xk,m) values vs the sensor-

measured robot distance zk and the map-based particle distance obtained

by ray casting d. As expected, the probabilities of the zk and d being equal

are the highest, and the probabilities of the two values being very different

are very low, except for zk = 200, the case in which the LiDAR scanner is

attempting to measure a distance greater than 200 m, the maximum of its

range of measurement.

This conditional probability represents new evidence that we

should use to update our particle likelihoods using Baye’s

rule:

P (robot’spose = posei|lidarscan) = P (lidarscan|posei)P (robot’spose = posei)

(7)

giving the updated rule

likelihoodi ← P (lidarscan|posei) · likelihoodi. (8)

Unfortunately, this naive update rule fails to take into account

that nearby LiDAR scans provide highly correlated informa-

tion. To correct for this, we can “squash” the conditional

probability using the time elapsed since the last scan, making

it so that the expected change in log likelihoods does not

depend on the number of LiDAR scans taken in a given time:

likelihoodi ← P (lidarscan|posei)∆t · likelihoodi. (9)

Finally, we rescale all the particles’ likelihoods so they sum

to 1:

likelihoodi ← likelihoodi/
∑
i

likelihoodi. (10)

E. Determining the Pose of the Robot (Nicole and Joseph)

The odometry and LiDAR data update 200 particles at every

measurement instance. To localize the car to a location on the

map, an estimate of the car’s pose must be taken from these

particles. To do this, we take an average of the particles.

To determine an estimate of the robot’s pose, we separately

calculated its location and orientation. The location was

determined by taking the weighted mean of the particles’

x coordinates for the x position and the weighted mean of

the particles’ y coordinates for the y position (Fig. 4). These

values were considered to be the (x, y) coordinates of the

robot. We determined the orientation by taking the circular

mean of the particles’ relative rotations by projecting their

angles onto the unit circle and then taking the mean of the

points intersecting with the edge of the circle (Fig. 4).

Fig. 4. A representation of our calculations of the location and orientation of

the robot. The robot’s position, represented by the red point, is determined

by taking the mean of the x and y coordinates of every particle, represented

in blue. The orientation of the robot, represented by a red arrow, is

determined by taking the circular mean of the orientations of every particle,

represented in blue.

F. Resampling Particles (Joseph)

When determining and updating beliefs about particle po-

sitions, particles with higher likelihoods are preferred over

those with lower likelihoods. We do this in a step called

resampling. During this step, we resample particles using the

likelihoods that are calculated in the previous distance sensor

(LiDAR) step. Resampling is not done with every likelihood

update (i.e., after every LiDAR scan), as is described below.

One issue we faced with our particle filter was a loss of

variety in our particles after resampling. Even if the particles

are all equally likely, a random resampling of the particles will

reduce the number of distinct particles by about 37 percent.

(The expected number of particles lost after resampling with

equal weights is n(n−1
n)n ≈ n

e ≈ 0.3679n.) This means that if

we resample after every LiDAR scan, our particles will collapse

exponentially quickly onto a single point. To circumvent this

4

problem, we (1) added Gaussian noise after every resampling

and (2) resampled less often by not resampling unless the en-

tropy of the particles (i.e. −
∑

i likelihoodi ln(likelihoodi))
became too small. Our specific choice of threshold was

n logn/2, where n was the number of particles in our

filter—half the entropy of a uniform distribution of particles.

This threshold allowed us to resample when our particles’

weights became too uneven (and thus didn’t represent the

actual distribution very optimally) while avoiding the expo-

nential collapse mentioned above.

III. EXPERIMENTAL EVALUATION

A. MCL Localization in Simulation (Christina)

We first verified our algorithm’s functionalities in simulation.

We used odometry and LiDAR sensor input to update the

participle positions and orientations. That data computes

an estimated average position on the map. To visualize the

calculated averages, we initially visualized a MarkerArray that

identifies all of the robot’s historical position data. Later,

we upgraded that visualization to be the optimized Path

visualization native to ROS and RViz which more smoothly

displays where the robot car has been over time (Fig. 5). We

were able to visually verify that the position determination

is accurate based on how similar the “slime trails” were to

the actual path of the car. To run our localization algorithm

in simulation, we utilized Joseph’s wall follower simulation to

move the car in simulation and qualitatively determine if the

robot understands its position and orientation.

Fig. 5. A visualization of robot localization in simulation. The “slime trail”,

represented as a green line, shows all of the previous positions of the robot

as calculated by our MCL algorithm. Our robot is represented in its position

as a blue car with black wheels, and the particles used to estimate the robot’s

pose are represented as red arrows. LiDAR data points used to update the

particles are represented by points ranging from red to blue, depending on

their measured distance from the car.

We determined the accuracy of our model by running given

autograder tests that compare our results with the staff’s

answers, and our results gained higher accuracy than the staff

solution. Fig. 6 illustrates how our model robot’s trajectory in

simulation with given odometry information compares with

the ground truth and the staff implementation. Each graph

varies in the amount of Gaussian noise in the odometry,

and even with varying levels of noise, our implementation

captures the right trajectory projection.

Fig. 6. Localization results from simulation tests of our MCL algorithm,

with low, medium, and high Gaussian noise. These tests were generously

provided by the 6.4200 teaching staff. For each level of noise, our simulation

performed better than the staff solution by following the ground truth path

more closely and more smoothly.

5

B. MCL Localization in the Physical World (Christina)

Simulation mimics perfect environments, the physical world

has randomness and more noise that it needs to account for.

To combat this concern and verify our simulation results, we

set up experiments in real life, collected data, and analyzed

it. First, moving the algorithm from the simulation into

the real world required troubleshooting and adjusting some

parameters. For example, setting up the localization package

required initializing poses manually, which we collected by

running a python script on our local computer that publishes

a manual input to the racecar computer, so our initial pose is

accurate. We also needed to add a lock on our code, so that

parameters are not initialized incorrectly due to race condi-

tions. The odometry data collection process was attempting

to receive and update particle data at the same time as a

new initialization attempt, so the odometry data collection

and publication would sometimes populate our algorithm

with outdated information due to this race condition, and

the algorithm would not be able to update correctly since

the new, accurate data is lost. We implemented a python

mutex lock on the data population, and that resolved the

problems.

After troubleshooting, we were able to control the racecar

and see it locating its position and orientation live. We can

visibly see that the robot was able to correct its orientation

on the Rviz as we modified the angle that it was facing. We

can quantitatively see our algorithm with its particles at work

via the following graphs. Fig. 7 depicts how the particles had

a high spread initially, but quickly converges to a smaller

standard deviation value.

Fig. 7. A plot of the convergence of the MCL’s particle spread, showing the

standard deviation of the particle cluster over time. Initially, the standard

deviation is 0.84 m, but decreases below 0.15 m within a second and stays

low

When our particles eventually converged, we initially encoun-

tered cases when our particles converged to an incorrect

location, and the algorithm was not able to allow the particles

to converge into the correct location. To address this, we

decided to resample our data at a threshold when entropy

is low (as described in section 2F), so our new particles can

have a larger spread and hopefully then converge again to

the correct location (Fig. 8).

Fig. 8. A plot of the convergence of the MCL’s particle spread, showing

the standard deviation of the particle cluster over time. Between 23.75 and

24.00 s, the entropy of the particles become lower than nlog(n) (with n
representing the number of particles), so our data is resampled to have the

initial sampling standard deviation (in this case, the initial standard deviation

was set to 1.75 m).

IV. CONCLUSION (NICOLE AND CHRISTINA)

In lab 5, we successfully implemented the Monte Carlo Lo-

calization (MCL) algorithm on our robot in multiple simulated

environments, as well as in the physical world. Using LiDAR

and odometry data, our algorithm was able to narrow down

our spread of possible particle locations and orientations to

a pose to represent that of the robot. Our results were

accurate, as evident by a visual comparison of the robot’s

pose in simulation or the physical world and the particles’

coordinates. In situations when the initial convergence of

the particles was not consistent with the robot’s location,

this was able to be resolved with the help of resampling any

time the particles’ entropy got too low. Our implementation

allows for our robot to traverse the Stata basement while

using LiDAR and odometry data to determine where it is.

Though we accomplished our goal of localizing our robot

in the Stata basement with the help of MCL, there are

still aspects of our implementation that we can improve.

Our current method for determining the actual pose of

the robot with information about our particle cases works

well for a unimodal distribution of particles. However, this

method requires taking the mean of particles’ positions and

orientations, which would fail in the case of a multimodal

distribution of particles. If our MCL narrowed down the

possible pose of the robot to two or more possible places on

a map, our algorithm would place the robot in the middle of

the two-particle clusters representing the possible locations.

6

This estimate is incorrect, as our robot pose estimate only

determines a single average position over all the particles.

We did not run into this issue while testing in any simulated

map or the Stata basement, but this is likely because the

locations where we were able to test have enough features

to look distinct from every other location on the map.

Despite this, it would be useful to improve our handling

of multimodal particle clustering, as we will be using our

localization algorithm in lab 6.

Additionally, though our robot was capable of correctly im-

plementing the MCL algorithm in simulation and the physical

world, the accuracy in the simulation was higher than in robot

tests in the physical Stata basement. Our MCL algorithm

would sometimes acquire so much error that the localization

was incorrect—our robot was nowhere near the position cal-

culated on the map. This is likely due to a lack of robustness

in our algorithm and the fact that the physical environment

of the Stata basement is not identical to the predetermined

map the robot is using for localization—there were people

and furniture in the basement that were not on the map

while we ran our physical tests, and all the doors leading out

of the main hallway of the basement were closed during our

physical tests while they were open in the predetermined

map. Due to time constraints during this lab, we were not

able to fully explore solutions to increase robustness to

different types of naturalistic noise. While we did include

Gaussian noise in our MCL simulations to which our algorithm

was robust, it would be beneficial to add different kinds of

noise and improve our algorithm’s robustness to those in the

future.

V. LESSONS LEARNED

1) Joseph: I learned how to downsample data using cubic

splines. I also learned how to apply Bayesian reasoning in

engineering! Finally, between my four final projects and two

midterms, I learned how to manage my time effectively and

quickly switch between different tasks.

2) Christina: Technically, I understood how to implement

a localization algorithm like MCL to utilize statistics and

sampling to determine a robot’s location and orientation. I

learned effective bug-isolating skills and asked for help to

pinpoint problems like the incapability of initializing particles

on the racecar’s computer faster. I’m still learning how to

work effectively in a team with varying skills and interests,

but we have the groundwork of trust and care to continue

improving our teamwork.

3) Timothy: I learned how to localize a robot’s position on a

predetermined map using the MCL algorithm. I also learned

how to deal with issues of filter robustness, as original

implementations of our particle filter converged quickly and

often to erroneous poses. I also improved my testing and

iteration skills, as this is necessary to test small updates to

our algorithm.

4) Nicole: I learned about and helped implement the Monte

Carlo algorithm on a physical car, which was exciting because

localization is a common and useful task that many robots

need to accomplish. I also did some thinking independently

about how algorithmic localization works in comparison to my

own, organic localization, and it was cool to discover some

of the similarities and differences between how those two

systems can work. Additionally, I gained more experience

trusting my teammates to accomplish what was necessary

even if I wasn’t involved, as this lab had a lot of components

that were created in parallel and were then connected later.

5) Jessica: In this lab, I learned about real-world applications

of the Monte Carlo algorithm, which also means I gained a

deeper understanding of the probability and statistical con-

cepts used, such as random sampling and data interpretation.

I think my team also learned a few valuable lessons on

efficiently splitting up tasks among us and the importance

of being understanding and empathetic towards each other.
1

1Editor: Jessica Wu

