
Lab 3 Report: Wall Follower and Safety

Controller

Team 11

Joseph Camacho

Christina Chen

Timothy Kostolansky

Nicole Shigiltchoff

Jessica Wu

6.4200 Robotics: Science and Systems

March 12, 2023

1 Introduction

1.1 Challenge Definition (Christina)

We were tasked with programming a miniature racecar to drive parallel to a wall

at a specified distance. This car was also required to have a safety controller to

prevent it from driving into people and objects. Wewere given the ability to send

driving directions to the car via an on-board program. The car has a 2-dimensional

LiDAR scanner which informs the driving decision making.

In addition todriving alongwalls andproviding a safetymechanism, the car needed

to follow non-linear walls, turn inner and outer corners, and prevent significant

deviation from the desired distance from the wall.

To accomplish this goal, our first taskwas to implement amethod for collaborating

on our code. We needed a system to share and merge our code, as well as up-

load it onto the racecar’s computer. The second taskwas to create and implement

1



an algorithm for a wall follower that could drive the robot at a desired distance

from a wall with minimal oscillation along straight edges, as well as turn inner

and outer corners withminimal deviation from the desired distance. The highest-

performing parts of our individual simulation programs needed to be combined

into one wall follower, and the LiDAR data needed to be processed with different

parameters than in our simulations due to its imperfections. The last task was to

create a safety controller algorithm that would override any autonomous move-

ments if there was an instance that the racecar should stop. This ensured that

our expensive and powerful racecar would be safe to operate throughout this lab

and any testing in the future.

1.2 Challenge Motivation (Christina)

Motivations for lab 3 included learning how to establish connections between

our computers and the racecar and ensuring that all team members knew how

to upload and download code from the cars. Additionally, we needed to learn

how to create autonomous algorithms that run both effectively and safely in a

worldwhere input data is almost always noisy. Building interpersonal connections

between teammembers was also important for this lab, as this was the first time

wewereworking together. Learningmore about each others’ strengths, technical

backgrounds, and work styles helped us more smoothly collaborate on our code

and accomplish deliverables faster.

2 Technical Approach

2.1 Robot Setup and Robot-Computer Connection (Jess)

In order to familiarize ourselves with the hardware necessary for this lab and de-

termine its functionality, we followed the tutorial provided in the README.mdfile

in the mit-rss wall_follower repository. We first identified the robot’s two batter-

ies, one for the motor and the other for the microcontroller and the sensor, and

determined how to turn them on and connect them to the appropriate compo-

nents (Figure 1). Next, we identified the robot’s computer and connected it to

a lab member’s computer. The connection between a robot and a computer is

based on a wifi network from a nearby router, and both devices must be logged

onto the network to allow for code to be downloaded from and uploaded to the

robot using Remote Sync (rsync), a tool used to sync files between remote and

2



local servers.

To test the functionality of all the robot components, we used teleop (a set of

scripts to allow teleoperation) to connect a controller to the robot. We thenman-

ually operated the robot to test forwards and backward driving, as well as turning

right and left.

Figure 1: Racecar physical structure depicts battery ports, censor, computer, and

router location, which are important areas to understand for connection and de-

bugging

2.2 Wall FollowerAlgorithmDevelopment andOptimization (Tim,

Christina, and Nicole)

Our wall follower algorithm takes LiDAR data as input. The LiDAR input came

from the Hokuyo LiDAR device mounted on the front of the robot. This algorithm

processed the data similarly to thewall followers we eachwrote for Lab 2: we col-

lected and filtered distance data from the LiDAR sensor to ensure that the robot

was only looking at data in a relevant range, estimated the robot’s error from its

ideal path, and adjusted the steering angle using a proportional-derivative (PID)

controller. In order to reduce noise in our sample data, we filtered out points that

were too far from the robot. We knew that the scope of this lab did not require

3



that our robot find walls further than 3 meters away, so any LiDAR data that in-

dicated a point greater than 3 meters away from the robot was discarded. Then,

we divided all of the LiDAR data into three sections—right, left, and front (Figure

2). We read data from either the left or right section, depending on a variable

parameter, and converted it from polar into cartesian coordinates for more con-

venient calculating in subsequent steps. Next, we used those points to estimate

the location of the wall with a straight line using least-squares linear regression.

We then add our desired distance from the wall to find our robot’s desired path.

Figure 2: LiDAR data collection diagram depicting our algorithm that searches 3

separate sections depending on functionality of code

We assume that this estimated desired path is very close to the optimal path of

our robot. We calculate the error of the robot, defined as the distance from its

optimal path, and use the error to determine how the robot should turn to min-

imize that error. And this process is the core of our wall-following algorithm. In

4



addition to that, we also inserted two edge case checks in the algorithm. For

one, the robot may be swiftly approaching the wall in the front, which the left-

/right side data does not inform us of. So we add a check at the very beginning

that the robot steers away immediately if it detects a wall in front. We also added

a check after filtering the data in case it does not detect any walls around itself, in

which case it turns at a preset angle in search of a wall. The final decision-making

process our robot follows is visualized in figure 3.

Figure 3: Algorithm of wall follower code depicts racecar movements and deci-

sions that leads it to successfully follow wall and turns corners

2.3 Tuning PD Control Constants (Jess and Nicole)

Using a Proportional Derivative (PD) controller with the error and its derivative

over time,wedecreased the racecar’s deviation from thedesiredpath. Thederiva-

tive of the error was included in order to prevent overcorrection as the car ap-

proached its desired path. We chose a PD controller because almost all group

members found it to improve wall following accuracy in our simulation as op-

posed to Proportional control (not including the derivative of the error), but did

5



no better than Proportional Integral Derivative (PID) control, amore complex con-

troller that also includes the integral of the error. The equation we used to calcu-

late the adjusted error is

A(t) = KP × e(t) +KD × d

dt
e(t) (1)

With Kp representing the weight of the actual error and Kd representing the

weight of the derivative of the actual error over time, we manually adjusted the

constants used in the PD controller formula to minimize racecar oscillation and

aggregate error at different speeds, starting angles relative to the wall, and wall

following distances.

2.4 Designing and implementing the safety controller (Jess)

For our safety controller, we collected information from the front region of the

LiDAR scan, (Figure 2). We iterated through the scan, searching for data points

below a minimum threshold, defined as

Tstop = Kv × vcar (2)

With Tstop being the distance (m) the car stops away from the wall, Kv being a

constant we manually adjusted and tested, and vcar being the current speed of

the racecar. This threshold is designed to provide enough braking distance for the

car to stop before making contact with an obstacle in front of it.

If three consecutive LiDAR data points were observed to be below the minimum

threshold, the safety controller perceived that to be an obstacle in front of the

car and would cause the car to brake. Three consecutive LiDAR data points were

chosen to avoid the racecar stopping in response to noisy LiDAR data, where it

was possible that one or twodata points perceived to be too closewere just noise.

Though this method does not cancel out noise completely, it effectively reduces

the impact of outlier data points caused by noise, assuming that noise affects

pixels individually.

3 Experimental Evaluation

3.1 PD Parameter Evaluation (Tim and Nicole)

All parameter evaluationwas done by setting the racecar parallel to awall 1meter

away from the right side of the car. The desired wall-following distance was set

6



Figure 4: Front LiDAR data visualization depicts the angle and distance that the

computer takes in to use for safety controller

to 0.5 meters, and the side to wall-follow was set to the right side. The wall fol-

lowing distance and wall side were kept constant for all tests and were not varied

due to time constraints. The safety controller was run during all tests to protect

the car from damage. All trials are labeled “PID-{Kp}-0-{Kd}-{v}” with Kp, Kd,

and v being the same as described previously and 0 representing the use of PD

control as opposed to PID control. The first step to determining the PD constants

was to choose a Kp constant that allows the robot to quickly approach 0 error

between its actual and desired distance away from the wall. We setKp equal to

five different values ranging from .25 to 2, and set the velocity to 1 m/s, as that

was slow enough to ensure that any collisions or accidents that could happen dur-

ing the test could be prevented by either our safety controller or manually lifting

the car off the ground. We observed that the racecar displayed oscillations with

7



the smallest amplitude with aKp of 0.5, allowing the car to approach 0 error the

fastest (Figure 5).

Figure 5: Error from Desired Path over Time forKp Tuning

Interestingly, we found that aKp of 2 and 5 sent the racecar into the wall (though

no collision occurred because the safety controller was running during all the tri-

als). Next, we tried values Kd ranging between 0 and 2 while keeping the Kp at

0.5. We first tried this for 1 m/s, the previous testing speed for different values

of KP. We observed that the racecar displayed oscillations with the smallest am-

plitude with aKd of 0.5, allowing the car to approach 0 error the fastest (Figure

6).

We then tested our values of Kp and Kd at 2 m/s to test if these constants still

produced the desired behavior of the car (following the wall with minimal error

from the desired distance). We observed that a KP and KD combination of 0.5

and 0.5 still enabled the car to perform its best (Figure 7).

For the test with theKp andKd combination of 0.5 and 0.5, we allowed the robot

to turn a corner of the wall we were testing it with, and we qualitatively observed

a similar pattern of oscillation as in the first four seconds of that test (though our

recording was inadvertently cut off before that could occur and we were not able

8



Figure 6: Error from Desired Path over Time forKd Tuning at 1 m/s

to make a new one due to time constraints). This supports the fact that Kp and

Kd of 0.5 and 0.5 allows for our wall follower implementation to work accurately

and robustly.

We chose the final values for our Kp and Kd to be 0.5 and 0.5 because that al-

lowed for the robot to reach its desired distance away from the wall the fastest

and oscillated the least on the way there, allowing for the best PD control. Ad-

ditionally, we saw that these constants had the lowest error across two different

speeds, suggesting that our wall follower can work effectively in multiple condi-

tions and with various parameters.

3.2 Racecar Performance Evaluation (Tim, Christina, and Nicole)

To test the effectiveness of our wall follower algorithm, we simulated real-life

scenarios with the robot by choosing a new testing hallway location, randomly

choosing 0.6 or 0.4 m as the desired distances from the wall, pointing the robot

at a randomangle towards or away from thewall, and then tested the robot’s per-

formance when it started either too close or too far from the wall for either the

9



Figure 7: Error from Desired Path over Time forKd Tuning at 2 m/s

left or the right wall being tested (Figure 8). For all four tests, the robot success-

fully reached the desired distance away from the wall with minimal oscillation,

indicating the robustness of our wall follower with straight walls.

To evaluate the performance of our robot in corners, we placed it in a random

corner (an inner corner) and randomly set the robot to follow the right wall at a

desired distance of 0.4 m (Figure 9). The robot successfully completed the test,

turning through the corner and approaching the desired wall following distance

from the wall after the turn.

Unfortunately, we were unable to run more than one corner test due to time

constraints, however our qualitative observations of the robot in runs without

data collection suggest that the racecar can successfully turn both inner and outer

cornerswithout collisions and can emerge from the corner to follow thewall close

to the desired distance.

10



Figure 8: Robot Performance along Straight Walls

4 Conclusion (Christina)

For lab 3, our team successfully designed and implemented a wall-following al-

gorithm that allowed our robot to follow a wall located on either the right or left

side of itself. The robot can successfully turn both inner and outer corners while

staying close to the desired distance from the wall, as well as find and follow a

wall from a starting position away from a wall. This implementation can allow

the robot to systematically traverse through uncharted spaces, such as in solving

a physical maze.

After tuning our PD constants withKp andKd set to 0.5 and 0.5, our wall follower

implementation worked well for most observed cases, including in cases where

we did not collect quantitative information. Our robot effectively stayed close to

the desired distance away from the wall on both the right and left side equally

well and could turn both inner and outer corners without collision after which it

continued to follow the wall close to the desired distance away. The only cases

where we observed failure were acute inner corners, where the robot was not

able to turn fast enough, and also occasionally right inner corners. Further de-

11



Figure 9: Robot Performance Against Inner Corner

bugging and tuning are necessary to address these issues.

Additionally, we designed and implemented a safety controller to prevent front

collisions. This safety system prevents the robot from driving into stationary and

dynamic obstacles and is meant to protect the robot from physical damage in the

current and future labs. The safety controller we designedworkedwell for the en-

tirety of this lab, as we rarely encountered collisions while testing and they were

never serious enough to damage our hardware.

Though we successfully completed the challenges set by lab 3, our wall follower

implementation still hasmultiple areas of improvement. Thoughour robotworked

well for speeds we deemed reasonable enough for its practical use and testing,

the PD control we implemented did not prevent low-amplitude oscillations at

speeds greater than 3 meters. Further tuning our PD controller to work at higher

speeds may be useful in the future, as our final assignment for this class is a race-

course that will presumably require higher speeds than we tested in classroom

hallways. Additionally, givenmore time, we could have tried to test PID control in

our wall follower algorithm, as PID control helps prevent the error from accumu-

lating in the robot’s distance to the wall due to any asymmetries in its hardware

12



that can cause it to skew slightly to one side when it should be driving straight.

Though we only noticed a very small eccentricity in our robot’s driving trajectory,

this may become more of a concern for future labs where our challenges require

the robot to drive over longer distances.

5 Lessons Learned

5.1 Christina

I learned that it was useful to understand the physical structure of the robot be-

fore attempting to debug any hardware because it made debugging the hardware

easier. Additionally, I realized that tuning parameters was mostly trial and error

and that it’s likely that the proportions ofKp andKd are themost important com-

ponent in getting a PD controller to work. Also, I got better at connecting launch

files and making files executable at appropriate moments. Lastly, I improved my

skills with GitHub, vim, and other collaboration tools for coding and robotics.

5.2 Jessica

I am no stranger to working in groups for computer science related projects, but

this time, I found out just how helpful having other teammates with different

backgrounds on my team could be and I especially learned much from how we

help each other with our respective shortcomings. I also gained a deeper appreci-

ation for the hardware engineers who built our robot after we struggled so much

with connectivity issues. I learned to ask for help timely so the whole team does

not get stuck on trivial matters; such as with problems to which I personally do

not know the answer, but sometimes someone else’s experience tells us it may

just be a reboot situation.

5.3 Nicole

I learned that setting up our code to receive information takes much longer than

anticipated. Instead of allocating half a day for testing, we need at least two days

of testing code that we know is functional. Additionally, I realized that it’s critical

to take good care of our hardware because this can help prevent a lot of setbacks

with it that are related to broken parts. I observed a few other teams struggle

with this, so I think the best way to prevent that is to be careful when testing

13



and never leave our robot unattended. Lastly, I learned about how to move code

around among machines, and while I’m not very proficient at that now I know

that this is something I’d like to work on in future labs.

5.4 Timothy

I found that writing code for an engineering application requires both attention

to detail, as well as a willingness to simply try ideas out in practice (as long as

they are safe for myself and the robot). This was likely my biggest compromise

and lesson learned, as I often try to plan out most of any project that I do. I also

found that working in a group promotes creative thinking, as a variety of others’

thoughts allowed me to come up with ways to defend or improve my own ideas.

14


